纺织印染行业是我国工业的重要组成部分,废水量大,约占工业废水排放量的35%。印染废水水量大、有机污染物含量高、碱度和pH值变化大、水质变化大;可生化性能差,废水BOD5/COD值一般在20%左右;色度高,有时可达4000倍以上;印染行业中,PVA浆料和新型助剂的使用,使难生化降解的有机物在废水中的含量大大增加。
现代煤化工废水近零排放技术是协调生态环境与能源需求矛盾的关键。目前生化处理技术从重视单元技术发展为统筹考虑工艺衔接、处理系统容量和源头治理的关键技术集成。膜分离+分质分盐处理技术可在提高水资源利用率的同时回收盐资源,因此是当下最可靠的煤化工浓盐水处理技术。分析了技术及应用现状,结合技术特点为现代煤化工废水近零排放处理难点解决和未来发展方向提供参考。
工业废水零排放脱盐过程中不可避免地会产生大量浓盐水,浓盐水的主要成分是无机盐、重金属,也含有预处理、氯化、脱氯和脱盐等过程所用的少量化学品,如阻垢剂、酸和其他反应产物,浓盐水的处理已经是制约着各行业工业废水零排放的关键技术。
一般污水中的氮磷等营养元素都能够满足微生物需要,且过剩很多。但工业废水所占比例较大时,应注意核算碳、氮、磷的比例是否满足100:5:1。如果污水中缺氮,通常可投加铵盐。如果污水中缺磷,通常可投加磷酸或磷酸盐。
污水处理厂是接纳和处理从污染源排放的污(废)水的场所,因污水中含污染物总量或浓度较高,达不到排放标准要求或不符合环境容量要求,必须经过人工强化的方法加以处理以达到相关排放标准。
A2O法又称AAO法,是英文Anaerobic-Anoxic-Oxic第一个字母的简称(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。在传统 A2/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。
反渗透是以压力差为推动力,从溶液中分离出溶剂的膜分离过程。如图1所示,对料液侧施加压力,当压力超过膜两侧的渗透压差时,溶剂会逆着自然渗透的方向反向渗透,溶质被反渗透膜拦截。最终在膜的低压侧得到透过的溶剂,即产水;高压侧得到浓缩的溶液,即浓水。反渗透技术是一项成熟的脱盐技术,目前广泛应用于饮用水深度处理、工业废水回用、苦咸水脱盐、海水淡化等水处理领域。
磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。因此,在室外排水设计规范 GB50014-2006(2014年版)中对于化学除磷设计做了以下几个规定:1、关于化学除磷应用范围的规定。
我国是严重缺水的国家,人均水资源占有率不足世界平均水平的 1/3,水资源短缺已成为制约我国经济发展的重要原因。近几年国内很多企业积极探索“零”排放技术,低能耗、维护简单、高使用年限已成为企业不断追求的目标。目前国内很多行业和地区已实现了中水回用及减排,如火力发电、煤化工行业及西北部缺水地区。
地球上的水资源非常丰富,但能够供人类直接饮用和农业灌溉的淡水资源却非常稀缺,淡水资源仅占地球上所有水资源的2. 5% ,而且有超过半数的地表水存在于超过地下深度800 m 的地下蓄水层中,其开采和利用都是极其困难的,另外浅层地表水和淡水湖、淡水河的水资源仅占地球上所有水资源的0. 2% ,全世界有将近五亿人面临淡水资源紧缺的严峻形势。