国家统计局数据显示,2006—2015年我国工业用水量维持在1 350亿m3/a左右,占全国总用水量的1/4以上,且用水效率偏低。我国工业用水浪费情况严重,重复利用率约为40%,仅为发达国家的1/2,大量排放的工业废水对环境造成重大破坏。《2015年环境统计年报》显示,2015年我国工业废水排放量为199.5亿t,同比减少2.9%。尽管我国工业废水排放量有逐年减少之势,但由于基数过大,现阶段工业污水排放量依然十分巨大。
1高盐工业废水的来源及现状
高盐工业废水所含盐类主要为Cl-、SO42-、Na+、Ca2+、K+等,不同行业的工业废水所含无机盐离子有很大不同。含盐量一般以氯化钠计,其中总含盐质量分数至少为1%。高盐工业废水的来源主要有3个:
(1)在沿海缺水地区,海水淡化过程中产生的大量浓缩废水;
(2)工业生产过程中直接排放的高盐废水;
(3)工业生产过程中废水循环利用产生的盐水。我国高盐废水产生量占总废水量的5%,且每年仍以2%的速度增长。高盐废水若未经有效处理直接排放,会造成严重的环境污染。
2高盐工业废水浓缩工艺
高盐工业废水零排放的投资、运行成本较高,而决定成本的关键因素是蒸发结晶系统的废水处理量,若能在废水进入蒸发结晶前进行高倍浓缩,高盐工业废水的零排放成本将大大降低。高盐废水浓缩工艺种类众多,根据处理对象及适用范围的不同,主要将高盐废水浓缩工艺分为热浓缩和膜浓缩技术,二者关系并非彼此对立,实际工程中常将2种浓缩技术耦合,协同作用以实现高盐废水零排放。http://www.77963.zxdyw.com
1热浓缩技术
热浓缩是采用加热的方式进行浓缩,主要包括多级闪蒸(MSF)、多效蒸发(MED)和机械式蒸汽再压缩(MVR)技术等。热浓缩主要适于处理高TDS和高COD的废水,这类废水的COD通常高达数万到数十万毫克每升。
MSF技术起步于20世纪50年代,是最早应用的蒸馏技术。加热至一定温度的高含盐废水依次在一系列压力逐渐降低的容器中实现闪蒸气化,然后将蒸汽冷凝后得到淡水。MSF技术最初应用于海水淡化领域,由于其工艺成熟,运行可靠,现已发展应用于多种工业废水的处理与回用中。但硫酸盐结垢问题限制了MSF的首效蒸汽温度,从而影响了运行成本,同时MSF技术还存在产品水易受污染、设备投资大等缺点。在实际使用中常将MSF与RO或UF相结合,使得这些缺点得以弥补。A. M. Hassan提出了NF-RO-MSF系统,用NF膜去除废水中的结垢离子,使MSF系统得到更高的首效温度,不仅提高了清洁水的生产率,同时延长了MSF系统的使用寿命。在此基础上,A. N. A. Mabrouk等发展了NF-MSF-DBM(曝气与盐水混合)装置,中试结果表明,该装置的首效温度能够提升到100~130 ℃,造水比达到原有MSF系统的2倍,产水率增加19%,同时成本降低了14%。
MED技术以单效蒸发为基础,利用前效产生的二次蒸汽作为后效的加热蒸汽,同时后一效的操作压力和溶液的沸点相应降低,后一效的加热室成为前一效的冷凝器,将多个蒸发器串联起来一起运行,组成多效蒸发过程。多效蒸发能耗与效数关系如表 1所示。